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To evaluate whether two unattended field organic carbon instruments could provide data comparable

to laboratory-generated data, we needed a practical assessment. Null hypothesis statistical testing

(NHST) is commonly utilized for such evaluations in environmental assessments, but researchers in

other disciplines have identified weaknesses that may limit NHST’s usefulness. For example, in NHST,

large sample sizes change p-values and a statistically significant result can be obtained by merely

increasing the sample size. In addition, p-values can indicate that observed results are statistically

significantly different, but in reality the differences could be trivial in magnitude. Equivalence tests, on

the other hand, allow the investigator to incorporate decision criteria that have practical relevance to

the study. In this paper, we demonstrate the potential use of equivalence tests as an alternative to

NHST. We first compare data between the two field instruments, and then compare the field

instruments’ data to laboratory-generated data using both NHST and equivalence tests. NHST

indicated that the data between the two field instruments and the data between the field instruments and

the laboratory were significantly different. Equivalence tests showed that the data were equivalent

because they fell within a pre-determined equivalence interval based on our knowledge of laboratory

precision. We conclude that equivalence tests provide more useful comparisons and interpretation of

water quality data than NHST and should be more widely used in similar environmental assessments.
Introduction

Historically, most water quality data have been interpreted using

the null hypothesis statistical tests (NHST). The procedure tests

a ‘‘null’’ hypothesis—that differences between treatments are

zero—and an alternative hypothesis—that differences are

statistically significant. Examples are t-tests, analysis of variance,

regression analysis, trend analysis, etc. as well as their

nonparametric counterparts. Consider a study of two treatments,

A and B. In its most basic form, NHST postulates a null

hypothesis (H0) that there are no differences between A and B

and an alternative hypothesis (Ha) that A and B are statistically

significantly different at a given significance level (a, usually 0.05
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conclude that equivalence tests offer an alternative to classical stati

not of practical importance in understanding any environmental pr

172 | J. Environ. Monit., 2010, 12, 172–177
by convention). Then a probability (p) is calculated which is

commonly believed to provide evidence that the observed

differences are or are not due to chance.

An equivalence test, on the other hand, evaluates whether

treatments A and B are close enough to be considered similar.

The investigator sets a benchmark, then uses prior knowledge or

belief to define a region around the benchmark (equivalence

interval) within which the investigator has decided that the

difference is unimportant (possibly because the difference falls in

a range that is considered trivial). The equivalence interval has to

be set a priori. Detailed descriptions of the development and

theory of different approaches for testing equivalency are avail-

able in the literature.1–5 One can test for the null hypothesis that 2

(or more treatments) are inequivalent or for the alternative

hypothesis that they are equivalent, thereby reversing the tradi-

tional tests. This shifts the burden of proof to demonstrating that

what is being tested (e.g., water quality) meets certain criteria.

Equivalence tests have been most widely used in pharma-

cology for approval of generic drugs since 1984.6 Before a generic

drug is approved, clinical trials have to demonstrate therapeutic
sue of concern. Such research requires collection, analysis and

nvironmental data are evaluated using classical statistics which

f the research findings. In this paper, we present equivalence

ironmental water quality assessment issue. We posit that other

corporate the practical importance of the research findings. We

stics’ p-values in evaluating whether research findings are or are

oblem.
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equivalence (bioequivalence) to the reference formulation using

20% limits. Equivalence tests have not been widely adopted in

environmental studies although their use has been advocated.7,8

The following equations and discussion explain NHST and its

weaknesses:
Fig. 1 The Sacramento River at Hood station (Hood, 38.382�N,

121.519�W) was established in 1998 to provide a platform for collecting

grab samples and to support a secure enclosure for evaluating advanced

analytical instruments for online field monitoring of water quality.
H0: A � B ¼ 0 (i.e., A ¼ B) (1)

Ha: A � B s 0 (i.e., A � B < 0 or A � B > 0) (2)

where H0 is the null hypothesis and Ha is the alternative

hypothesis indicating statistically significant differences.

In the above example, if the calculated p is less than 0.05, the H0

is rejected. The conclusion is that treatments A and B are statis-

tically significantly different at the calculated a level. This is often

dismissed by NHST critics. For example, Kirk9 stated, ‘‘In scien-

tific inference, what we want to know is the probability that the null

hypothesis (H0) is true given that we have obtained a set of data

(D); that is, p(H0|D). What null hypothesis significance testing tells

us is the probability of obtaining these data or more extreme data if

the null hypothesis is true, p(D|H0).’’ In other words, the H0 infers

about (more extreme) data that were never collected.

When compared to other disciplines over the last 70 years,

water quality assessments contain few discussions critical of

NHST.10–17 Harlow et al.18 summarize NHST arguments (for and

against). These criticisms of NHST are pertinent to environ-

mental assessments because large sample size can increase

statistical significance and a statistically significant result is not

necessarily of practical significance.

The following are the main criticisms of NHST in other

disciplines:

(1) The basic premise of NHST where the difference between

treatments (or whatever is being tested) is assumed to be zero

(i.e., H0: m1 � m2 ¼ 0) is unrealistic. As Tukey19 put it, ‘‘All we

know about the world teaches us that the effects of A and B are

always different—in some decimal place—for any A and B.’’

Some null hypothesis tests have been termed ‘‘gratuitous signif-

icance testing,’’ i.e., using statistical significance testing for what

is readily obvious or is already known.20 An example from

literature is given by Johnson21 where a statistically significant

test was reported that ‘‘the density of large trees was greater in

unlogged forest stands than in logged stands (p ¼ 0.02).’’

(2) The p-value is arbitrary. Statistical significance has been

shown to increase with sample size, i.e., p-value gets smaller as

sample size gets larger.16,22,23 A possible solution is to predeter-

mine a sample size that prevents the test from becoming too

powerful. However, this approach is not feasible in long-term

environmental monitoring programs where accumulation of data

is unavoidable and is actually the main objective.

(3) A statistically significant result does not necessarily indicate

magnitude of effect or practical importance.9,24 In the social

sciences, some efforts provide a measure of the practical signifi-

cance of a statistically significant result using ‘‘effect sizes’’ to

indicate the practical importance of the results.11,16,25 However,

these interpretational approaches are largely absent from envi-

ronmental literature where a small statistically significant p-value

is still the gold standard in interpreting research findings.

In this paper, we demonstrate the potential use of equivalence

tests as an alternative to NHST in environmental assessments.
This journal is ª The Royal Society of Chemistry 2010
We present equivalence tests from a practitioner’s point of view.

In our study, we use organic carbon (OC) data generated by two

online field OC instruments each using a different analytical

method. We compare a subset of the field instruments’ data to

grab sample results analyzed in the laboratory. The first objective

is to determine if the two field instruments’ data are comparable.

The second objective is to determine if the two field instruments’

data are of comparable precision quality to laboratory-generated

data. We will discuss why equivalence tests more than NHST

provide more practical interpretation of the data to answer the

above objectives.

Materials

The California Department of Water Resources (DWR) has been

collecting biweekly OC grab samples and analyzing them at its

accredited Bryte Chemical Laboratory (Bryte Lab) since the

1980s. The Sacramento River at Hood station (Hood, 38.382�N,

121.519�W) is about 25 km from DWR’s Sacramento head-

quarters and was established in 1998 to provide a platform for

collecting grab samples and to support a secure enclosure for

evaluating advanced analytical instruments for online field

monitoring of water quality. The platform is approximately 15

meters from the river’s bank and 9 meters above the water

surface (Fig. 1). Water quality analytical instruments are secured

in an air-conditioned wood enclosure affixed on top a steel frame

structure. A submersible pump located approximately 1 meter

below the Sacramento River surface delivers sample water to the

instruments through approximately 21 meters of pressurized (69

kPa maximum) Teflon hoses. The Sacramento River drains

a watershed approximately 70 000 km2 in size and provides 75%

of the freshwater inflows into the Sacramento River-San Joaquin

River Delta, the largest estuary on the western coast of the

Americas. The estuary is a source of drinking water for about 26

million Californians. It also provides irrigation water to the

largest agricultural business in the United States and provides

habitat to numerous endangered aquatic organisms. OC is an

important constituent in water. During drinking water
J. Environ. Monit., 2010, 12, 172–177 | 173
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Fig. 2 A Shimadzu 4100 OC analyzer using high temperature catalytic

combustion oxidation method runs in tandem with a Sievers 800 organic

carbon analyzer using ultraviolet persulfate chemical oxidation method.
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treatment, OC reacts with disinfectants to form potentially

carcinogenic byproducts. OC is an important factor in the fate

and transport of pesticides in soil and water and plays a role in

climate change through carbon sequestration from air to soil.

A Sievers 800 laboratory-grade OC analyzer (GE Analytical

Instruments, Boulder, CO) using ultraviolet (UV) persulfate

chemical oxidation analytical method was installed in 1999. A

Shimadzu 4100 OC analyzer (Shimadzu Scientific Instruments,

Columbia, MD) using high temperature catalytic combustion

oxidation (HTC) analytical method was installed in April 2002 to

run in tandem with the Sievers 800 (Fig. 2). The two analytical

methods are described in Standard Methods.26 The United States

Environmental Protection Program (USEPA) has comparable

analytical methods. The equivalent USEPA method is 415.3.27

This method describes both HTC and oxidation in the analysis of

OC. The Sievers 800 was replaced with a new Sievers 900

instrument in May 2005. (Although the 900 has upgraded

hardware and software, its mode of operation is similar to the

800; the data from the two models are not separated in the data

analyses in this paper). We use OC collected by the two instru-

ments between April 2002 and April 2007 to demonstrate

potential use of equivalence tests over NHST in water quality

analysis.

The instruments were calibrated and maintained to manufac-

turers’ specifications by DWR field support staff. A Campbell

Scientific CR10X data logger (Campbell Scientific, North Logan,

Utah) controlled the analytical frequencies and also temporarily

stored the OC data. The data were uploaded every two hours by

phone modem to the online California Data Exchange Center

(CDEC) website (http://cdec.water.ca.gov). The station name is

‘‘srh.’’ Sievers is sensor 101, and Shimadzu TOC is sensor 112.
Methods

From CDEC we downloaded Sievers and Shimadzu OC raw

data between April 2002 and April 2007 (the study period) to

calculate daily and weekly means and standard deviations. To
174 | J. Environ. Monit., 2010, 12, 172–177
ensure that each instrument was operational at least 2 hours

every day, we removed OC daily data where there were fewer

than six individual analyses in any 24-hour period. This proce-

dure eliminated eight Shimadzu and no Sievers daily records.

The remaining data represented 1665 dates when both instru-

ments were operational (approximately 95% of the days in the

study period). Biweekly and monthly grab samples are still

collected (depending on a specific special project) at the Hood

station and analyzed at Bryte Lab using an OI Analytical 1010

organic carbon analyzer (OI Analytical, College Station, Texas,

USA). The OI 1010 uses chemical oxidation analytical method.
Statistical analyses

We used Minitab Release 15 (Minitab, State College, PA) for all

the statistical analyses.

The paired t-test is the standard method (in NHST) for

comparing two groups of paired data.28 The Kruskal–Wallis

(K-W) analysis of variance (ANOVA) test is one of the options

available in NHST for testing more than two sets of data. We

used both of these tests for the NHST analyses.

Paired t-test of Sievers versus Shimadzu OC daily average data.

First, we performed a paired t-test on the 1665 pairs of daily

means of Sievers and Shimadzu OC data. The t-test (a ¼ 0.05)

used the customary null hypothesis that there was no difference

between Shimadzu and Sievers daily OC means. The alternative

hypothesis was that they were statistically significantly different.

Paired equivalence test of Sievers versus Shimadzu OC data.

We tested for equivalency using macros written for Minitab 15

statistical software.29 The first macro was analogous to the

classical paired t-test and evaluated equivalency using 2 one-

sided tests (TOST) on the 1665 pairs of daily means. Each one-

sided test (of the TOST) was a t-test (a ¼ 0.05). We set the

equivalence interval at 20% using Sievers as the benchmark,

which then determined the lower and upper limits of the equiv-

alence interval for Shimadzu data to be equivalent to Sievers

data. We selected 20% based on historical precision studies of

laboratory OC instruments. Laboratory duplicate analyses of

OC in drinking water are considered to be within acceptable

limits if their differences are equal to, or less than, 20%. We

designated the lower limit (q1) as 20% below and the upper limit

(q2) as 20% above Sievers overall mean. The TOST as described

in this paper, assume that sample data are normally distributed

(i.e., that they follow a Gaussian distribution). Common tests of

normality such as Anderson–Joiner or Shapiro–Wilk are affected

by large sample sizes (defined here as n > 70) in the same manner

as other classical statistical tests. Thus, testing a large sample size

will result in a finding that the data are not normally distributed.

We suggest a number of ways to evaluate whether the data are

approximately normal. The simplest approaches are to use visual

aids such as boxplots or probability plots to provide a graphical

view whether the data are skewed or not. If the data are skewed,

the logarithmic transformation is probably the most common

method in environmental studies to attempt to bring such data to

normal distribution. Bootstrapping is an advanced method that

can be utilized to generate confidence intervals for the TOST.

The method involves sampling (with replacement) the data set to
This journal is ª The Royal Society of Chemistry 2010
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Fig. 3 Sievers and Shimadzu daily average organic carbon results are

equivalent.

Fig. 4 Kruskal–Wallis pairwise comparisons between instruments. The

dotted lines (�z, z) denote the interval outside of which paired differences

were statistically significantly different.
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develop the statistics needed to create the confidence intervals,

and it does not assume normality of the underlying data. Finally,

one can simply invoke the Central Limit Theorem when dealing

with large datasets. Simply stated, the theorem postulates that

the averages of a large number of independent observations will

be normally distributed. In this paper we had over 1000 daily

averages (our definition of a large sample size), and we invoked

the Central Limit Theorem for purposes of normality.

The macro procedure worked as follows:

Suppose that �d was the overall mean difference between the

1665 pairs of Shimadzu and Sievers OC daily average results. The

first part of the TOST performed the following hypothesis tests

(a ¼ 0.05):

H01: �d # q1 (3)

Ha1: �d > q1 (4)

where H01 was the null hypothesis and Ha1 was the alternative

hypothesis in the first t-test of the TOST.

The second part of the TOST performed the following

hypothesis tests (a ¼ 0.05):

H02: �d $ q2 (5)

Ha2: �d < q2 (6)

where H02 was the null hypothesis, and Ha2 the alternative

hypothesis in the second t-test of the TOST. The macro calcu-

lated the t-tests based on methods described by McBride.7

Note that in the above procedures (equations 3–6), we were

testing the null hypothesis of inequivalence (i.e., the null

hypotheses that Shimadzu OC data were not equivalent to

Sievers OC data). Shimadzu OC data were equivalent to Sievers

OC data only when:

q1 < �d < q2 (7)

If (7) was true, we would conclude that Shimadzu data were

equivalent to Sievers OC data.

The TOST is identical to testing whether the 90% confidence

interval around �d (calculated using 1 � 2a) is entirely contained

within the equivalence interval. If equivalence is found to be true in

the TOST, the confidence interval must be completely contained

within the equivalence interval.4,30 If any of the null hypotheses

was true, the two instruments’ data were not equivalent.

Multiple NHST of Sievers, Shimadzu, and Bryte Lab data. We

selected Sievers and Shimadzu daily OC averages on the dates

that a grab sample from Hood station had been analyzed by

Bryte Lab. This resulted in 169 days that had data points for all

three instruments. Due to expected autocorrelations of river

sample data collected within 24 hours of each other, we consid-

ered these 169 to be essentially replicate samples. We used K-W

to compare Sievers, Shimadzu, and Bryte Lab data. We then

followed with a K-W multiple comparisons test to determine

which instrument’s data were different from each other. The

multiple comparison tests used a Bonferroni adjustment by

dividing the alpha level by the number of pairwise comparisons

to keep the family error rate at 0.05%.
This journal is ª The Royal Society of Chemistry 2010
Multiple equivalence comparisons of Sievers, Shimadzu, and

Bryte Lab OC data. We used a second macro to perform multiple

equivalence paired comparisons of Sievers, Shimadzu, and Bryte

Lab OC data (n ¼ 169). Each paired comparison was essentially

the same TOST as before. A Bonferroni adjustment kept the

family-wise error rate at 0.05%.
Results

NHST versus equivalence comparisons of paired Sievers and

Shimadzu results

The paired t-test indicated that Shimadzu and Sievers daily

average field data were statistically significantly different

(p < 0.01, n ¼ 1665). On the other hand, the paired equivalence

test showed that Shimadzu data were equivalent to Sievers data.

Fig. 3 is a graphical output of the classical paired t-test and the

equivalence interval test. Fig. 3 shows that the 90% confidence

interval for the mean difference between Sievers and Shimadzu

OC data was completely contained within the Sievers equivalence

interval. Thus, the two instruments’ OC data were equivalent.
NHST multiple comparisons of Sievers, Shimadzu, and Bryte

Lab OC data

The K-W analysis of variance indicated significant differences

(p < 0.01, n¼ 169) between the 3 instruments’ OC data. The K-W
J. Environ. Monit., 2010, 12, 172–177 | 175
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multiple comparisons test determined which instruments’ results

were significantly different from each other. Fig. 4 is a graphical

representation of the multiple comparisons. The dotted line

(�z to z) denotes the interval outside of which paired differences

were statistically significantly different. Shimadzu results were

statistically significantly different from both Sievers and Bryte

Lab OC data.
Equivalence multiple comparisons of Sievers, Shimadzu, and

Bryte Lab OC data

Equivalence multiple comparisons of Sievers, Shimadzu, and

Bryte Lab data are graphically shown in Fig 5. The 90% confi-

dence interval limits between all paired differences are within the

20% equivalence interval. Thus Sievers, Shimadzu, and Bryte

Lab OC data were all equivalent.
Discussion

NHST versus equivalence tests

Because of the large sample size, we were not surprised that the

paired t-test indicated that OC results from the two field

instruments’ data were statistically significantly different from

each other, while the equivalence test showed they were equiva-

lent. The same applies to the K-W results indicating significant

differences between the field instruments’ data and the Bryte Lab

data. In large sample sizes, small, sometimes razor-thin non-zero

differences will be found to be statistically significant because the

calculated p-values become increasingly smaller. For this reason,

experimental results can be statistically significantly different but

statistically equivalent. Several potential outcomes are possible

when NHST methods are compared to equivalence tests in the

analysis of a data set: (a) results are statistically significantly

different and are not equivalent; (b) results are not statistically
Fig. 5 The confidence interval limits between all paired differences are

within the 20% equivalence interval (dotted line); thus Sievers, Shimadzu,

and Bryte Lab OC data were all equivalent. We consider the deviations

between the instruments to be expected reproducibility differences since

all the confidence intervals are contained in the equivalence interval.

176 | J. Environ. Monit., 2010, 12, 172–177
significantly different but they are equivalent; (c) results are

statistically significantly different and equivalent; and (d)

results are not statistically significantly different and are not

equivalent.30,31 Therefore, except for demonstration purposes

(as in this paper), it is futile to use both approaches to analyze the

same set of data. The very basis for using equivalence tests is to

get away from null hypothesis of zero difference.

This study contained a lot of data—more than 1000 OC data

pairs. Thus the paired t-test would be likely to detect small

negligible differences between the two instruments as statistically

significant. High frequency data may present serial correlation

problems when used for time series or trend analysis. In method

or instrument comparisons a major goal is to block for inter-

sample differences, i.e., to keep the aliquots of the replicate

samples analyzed in a round-robin study of different classes of

instruments as uniform as possible. So we did not consider serial

correlation to be an issue in our study. The equivalence test is the

appropriate test in this study because we were not interested in

small statistically significant differences but in differences of

practical significance, i.e., whether two unattended field instru-

ments using different analytical methods can provide data

comparable in quality to laboratory-generated results. The

equivalence tests demonstrated that the field UV persulfate

oxidation and the HTC oxidation generated comparable data to

each other at Hood station. Both instruments’ data were of

equivalent quality to laboratory-generated results. An advantage

of using field instruments is that they can generate high frequency

data at significantly lower cost compared to laboratory-analyzed

data. In addition, the field instruments provide data in near real

time; whereas, laboratory analysis of grab samples may take

several weeks.

Equivalence tests offer good alternative to tests of significance

in environmental assessments because they allow the investigator

to incorporate decision criteria that have practical relevance to

the study. Most environmental research projects are funded to

find a solution to one or more practical problems. It is therefore

desirable to use a data analysis technique that can readily indi-

cate the magnitude and/or practical importance of the study

results to the project’s objectives. In this study, it was logical to

use a precision criterion comparable to laboratory duplicate

analysis. We were interested in evaluating whether the unat-

tended field instruments could provide data comparable to

accepted laboratory quality standards. Equivalence tests

provided the mechanism to make these kinds of comparisons. If

equivalence tests are preferred in determining the effectiveness of

generic drugs for humans, it is our opinion that equivalence tests

should be good enough for environmental assessments.

A potential difficulty in using equivalence tests is objectively

determining the equivalence interval. Environmental research

historically has relied on statistical significance testing for deci-

sion-making and does not have a track record of defining

quantitative criteria to indicate practical significance of statisti-

cally significant test results. Exceptions are where limits are set by

a regulatory agency. Practitioners have a number of options to

determine a difference of practical significance.32 The first and

most straightforward is defining equivalence intervals empiri-

cally such as using a regulatory limit (as is the case with generic

drugs) or using calculations from previous research. In this paper

we set the equivalence interval using our knowledge of
This journal is ª The Royal Society of Chemistry 2010
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laboratory precision of OC analyses, which was an empirical

approach. A second approach to constructing the equivalence

interval is soliciting (or eliciting) opinions from experts in the

area of interest. This approach is more complex than the

empirical approach, but in many environmental situations, it

may be the only viable alternative.

Conclusions

This study investigated the viability of using laboratory-grade

OC instruments for field monitoring of water quality. Our

determination that the field instruments’ OC data were compa-

rable in precision to laboratory data was made through equiva-

lence testing. We suggest that equivalence tests provide more

useful comparisons and interpretation of water quality data than

the widely used classical NHST. Equivalence testing would work

well in other environmental assessments by requiring such

studies to establish a measure of the importance of the results

rather than arbitrary p-values.
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